假设mydict基于每个列表项是唯一的:
mylist = ['li1', 'li2']
mydict = {'key1': 'value1','key2': 'value2','key3': 'value3}
Run Code Online (Sandbox Code Playgroud)
我想在一个CSV文件中写这个结构:
ListItem, key1, key2, key3
li1, value1, value2, value3
li2, value1, value2, value3
Run Code Online (Sandbox Code Playgroud)
这是我如何尝试这样做的示例;但是我的代码每次迭代都会覆盖第一行,我不知道如何在第一列中编写列表项。请你帮我一下好吗?
import pandas as pd
import random
def CreateDict(li):
dict = {}
dict['x'] = random.randrange(1, li) #25
dict['y'] = random.randrange(1, li) #27
print(dict)
return dict
mylist = [10, 20, 30]
for li in mylist:
mydict = CreateDict(li)
df = pd.DataFrame([mydict])
df.to_csv('test.csv', index=False)
Run Code Online (Sandbox Code Playgroud)
我得到这个作为输出:
x,y
25,27
Run Code Online (Sandbox Code Playgroud) 我注意到以下两个代码的结果是不同的。
#1
metrics.plot_roc_curve(classifier, X_test, y_test, ax=plt.gca())
#2
metrics.plot_roc_curve(classifier, X_test, y_test, ax=plt.gca(), label=clsname + ' (AUC = %.2f)' % roc_auc_score(y_test, y_predicted))
Run Code Online (Sandbox Code Playgroud)
那么,哪种方法是正确的呢?
我添加了一个简单的可重现示例:
from sklearn.metrics import roc_auc_score
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.datasets import load_breast_cancer
data = load_breast_cancer()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=12)
svclassifier = SVC(kernel='rbf')
svclassifier.fit(X_train, y_train)
y_predicted = svclassifier.predict(X_test)
print('AUC = %.2f' % roc_auc_score(y_test, y_predicted)) #1
metrics.plot_roc_curve(svclassifier, …Run Code Online (Sandbox Code Playgroud)