是否可以从“model.h5”文件中获取预期的输入形状?我有相同数据集的两个模型,但具有不同的选项和形状。第一个模型预计为暗淡 (None, 64, 48, 1),第二个模型需要输入形状 (None, 128, 96, 3)。(注:宽度或高度不是固定的,当我再次训练时可能会改变)。只需使用 try: and except 即可轻松“修复”(或绕过)通道问题,因为只有两个选项(1 表示灰度图像,3 表示 RGB 图像):
channels = self.df["channels"][0]
file = ""
try:
images, src_images, data = self.get_images()
images = self.preprocess_data(images, channels)
predictions, file = self.load_model(images, file)
self.predict_data(src_images, predictions, data)
except:
if channels == 1:
print("Except channels =", channels)
channels = 3
images, src_images, data = self.get_images()
images = self.preprocess_data(images, channels)
predictions = self.load_model(images, file)
self.predict_data(src_images, predictions, data)
else:
channels = 1
print("Except channels =", channels)
images, src_images, data …Run Code Online (Sandbox Code Playgroud)