我正在尝试将Keras模型(LSTM)转换为TFlite,以便分两步在Android上进行部署。
我已经调整了代码,并将其与我的模型结合起来:
from sklearn.utils import class_weight
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Dropout
from keras.layers import Flatten
from keras.utils import to_categorical
from keras.optimizers import Adam
from keras import backend as K
from tensorflow.python.framework.graph_util import convert_variables_to_constants
import tensorflow as tf
from tensorflow.python.tools import freeze_graph
from tensorflow.python.tools import optimize_for_inference_lib
import os
import os.path as path
MODEL_NAME = 'pronation_classifier'
def evaluate_model(X_train, labels_train_cat, X_test, labels_test_cat):
verbose, epochs, …Run Code Online (Sandbox Code Playgroud)