我正在使用 from sklearn.preprocessing import MinMaxScaler 和以下代码和数据集:
df = pd.DataFrame({
"A" : [-0.5624105,
-0.5637749,
0.2973856,
0.619784,
0.007297921,
0.8146919,
0.1082434,
-0.2311236,
-0.6945567,
-0.6807524,
-0.1017431,
0.5889628,
0.5384794,
0.3906553,
0.3843442,
0.4408366,
0.4035791,
0.05258237,
-0.4847771
],
"B" : [-0.5068743,
0.1422121,
0.6444226,
0.4959088,
-0.2260773,
0.3420533,
0.2346546,
0.1177824,
-0.7701161,
-0.7566853,
-0.5091485,
0.4509938,
0.4209853,
0.304058,
0.3753832,
0.6958977,
0.6763205,
0.05536954,
-0.9857719
]})
min_max_scaler = MinMaxScaler(feature_range=(0,255))
print(df)
df[df.columns] = min_max_scaler.fit_transform(df[df.columns])
print(df)
print(type(df))
Run Code Online (Sandbox Code Playgroud)
我想用整个数据集中的最小值和整个数据集中的最大值来缩放它,如何使用相同的代码来管理它?是否可以?
A B
0 -0.562411 -0.506874
1 -0.563775 0.142212
2 0.297386 0.644423
3 0.619784 0.495909
4 …Run Code Online (Sandbox Code Playgroud)