如何获取当前行与前行相比的排名
我有一个数据框,如:
Instru Price Volume
ABCD 1000 100258
ABCD 1000 100252
ABCD 1000 100168
ABCD 1000 100390
ABCD 1000 100470
ABCD 1000 100420
Run Code Online (Sandbox Code Playgroud)
我想获得当前行与 Volume Column 的所有先前行相比的排名。
所需的数据帧数据:
Instru Price Volume Rank
ABCD 1000 100258 1 => 1st Row so Rank 1
ABCD 1000 100252 2 => Rank 2 (Compare 100258,100252)
ABCD 1000 100168 3 => Rank 3 (Compare 100258,100252,100168)
ABCD 1000 100390 1 => Rank 1 (Compare 100390,100258,100252,100168)
ABCD 1000 100470 1 => Rank 1 (Compare 100470,100390,100258,100252,100168)
ABCD 1000 …Run Code Online (Sandbox Code Playgroud) 我想从 TradingView 链接加载经济日历数据并加载到 Dataframe 中?
Link: https://in.tradingview.com/economic-calendar/
Filter-1: Select Data for India and United States
Filter-2: Data for This Week
Run Code Online (Sandbox Code Playgroud)
我的代码:
import matplotlib.pyplot as plt
import pandas as pd
import os, glob
path = r'C:/Users/New folder'
all_files = glob.glob(os.path.join(path, "*.txt"))
df = pd.DataFrame()
for file_ in all_files:
file_df = pd.read_csv(file_,sep=',', parse_dates=[0], infer_datetime_format=True,header=None, usecols=[0,1,2,3,4,5,6], names=['Date','Time','open', 'high', 'low', 'close','volume','tradingsymbol'])
df = df[['Date','Time','close','volume','tradingsymbol']]
df["Time"] = pd.to_datetime(df['Time'])
df.set_index('Time', inplace=True)
print(df)
fig, axes = plt.subplots(nrows=2, ncols=1)
################### Volume ###########################
df.groupby('tradingsymbol')['volume'].plot(legend=True, rot=0, grid=True, ax=axes[0])
################### PRICE ###########################
df.groupby('tradingsymbol')['close'].plot(legend=True, rot=0, grid=True, ax=axes[1])
plt.show()
Run Code Online (Sandbox Code Playgroud)
我的清单为:
list = ['67.50', '70.00', '72.50', '75.00', '77.50', '80.00', '82.50']
Run Code Online (Sandbox Code Playgroud)
我想检查字符串是否为foat,然后将其转换为float,如果字符串为int,则应将其转换为int。
所需输出:
list = [67.50, 70, 72.50, 75, 77.50, 80, 82.5]
Run Code Online (Sandbox Code Playgroud) python ×4
python-3.x ×4
pandas ×3
annotations ×1
dataframe ×1
list ×1
matplotlib ×1
selenium ×1
web-scraping ×1