小编Nas*_*sin的帖子

使用 Huggingface TextClassificationPipeline 时如何设置标签名称?

我使用经过微调的 Huggingface 模型(在我公司的数据上)和 TextClassificationPipeline进行类别预测。现在,此预测的标签Pipeline默认为LABEL_0LABEL_1依此类推。有没有办法向TextClassificationPipeline对象提供标签映射,以便输出可以反映相同的结果?

环境:

  • 张量流==2.3.1
  • 变形金刚==4.3.2

示例代码:

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # or any {'0', '1', '2'}

from transformers import TextClassificationPipeline, TFAutoModelForSequenceClassification, AutoTokenizer

MODEL_DIR = "path\to\my\fine-tuned\model"

# Feature extraction pipeline
model = TFAutoModelForSequenceClassification.from_pretrained(MODEL_DIR)
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)

pipeline = TextClassificationPipeline(model=model,
                                      tokenizer=tokenizer,
                                      framework='tf',
                                      device=0)

result = pipeline("It was a good watch. But a little boring.")[0]
Run Code Online (Sandbox Code Playgroud)

输出:

In [2]: result
Out[2]: {'label': 'LABEL_1', 'score': 0.8864616751670837}
Run Code Online (Sandbox Code Playgroud)

nlp huggingface-transformers

7
推荐指数
1
解决办法
6751
查看次数

使用 Huggingface TFTrainer 类微调模型时如何指定损失函数?

我遵循了下面给出的基本示例,来自:https ://huggingface.co/transformers/training.html

from transformers import TFBertForSequenceClassification, TFTrainer, TFTrainingArguments

model = TFBertForSequenceClassification.from_pretrained("bert-large-uncased")

training_args = TFTrainingArguments(
    output_dir='./results',          # output directory
    num_train_epochs=3,              # total # of training epochs
    per_device_train_batch_size=16,  # batch size per device during training
    per_device_eval_batch_size=64,   # batch size for evaluation
    warmup_steps=500,                # number of warmup steps for learning rate scheduler
    weight_decay=0.01,               # strength of weight decay
    logging_dir='./logs',            # directory for storing logs
)

trainer = TFTrainer(
    model=model,                         # the instantiated  Transformers model to be trained
    args=training_args,                  # training arguments, defined …
Run Code Online (Sandbox Code Playgroud)

nlp python-3.x tensorflow huggingface-transformers

5
推荐指数
1
解决办法
4352
查看次数