我是 Word2Vec 的新手,我正在尝试根据单词的相似性对单词进行聚类。首先,我使用 nltk 来分隔句子,然后使用生成的句子列表作为 Word2Vec 的输入。然而,当我打印词汇时,它只是一堆字母、数字和符号,而不是单词。具体来说,其中一个字母的示例是“< gensim.models.keyedvectors.Vocab object at 0x00000238145AB438>, 'L':”
# imports needed and logging
import gensim
from gensim.models import word2vec
import logging
import nltk
#nltk.download('punkt')
#nltk.download('averaged_perceptron_tagger')
with open('C:\\Users\\Freddy\\Desktop\\Thesis\\Descriptions.txt','r') as f_open:
text = f_open.read()
arr = []
sentences = nltk.sent_tokenize(text) # this gives a list of sentences
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',level=logging.INFO)
model = word2vec.Word2Vec(sentences, size = 300)
print(model.wv.vocab)
Run Code Online (Sandbox Code Playgroud)