小编Fre*_*ons的帖子

如何在决策树sklearn中计算精确召回率?

我尝试在标准数据集“iris.csv”中进行预测

import pandas as pd
from sklearn import tree
df = pd.read_csv('iris.csv')
df.columns = ['X1', 'X2', 'X3', 'X4', 'Y']
df.head()

# Decision tree
from sklearn.model_selection import train_test_split
decision = tree.DecisionTreeClassifier(criterion='gini')
X = df.values[:, 0:4]
Y = df.values[:, 4]
trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.25)
decision.fit(trainX, trainY)
y_score = decision.score(testX, testY)
print('Accuracy: ', y_score)


# Compute the average precision score
from sklearn.metrics import average_precision_score
average_precision = average_precision_score(testY, y_score)

print('Average precision-recall score: {0:0.2f}'.format(
      average_precision))
Run Code Online (Sandbox Code Playgroud)

我有值错误

File "C:/Users/Ultra/PycharmProjects/poker_ML/decision_tree.py", line 20, in …
Run Code Online (Sandbox Code Playgroud)

python machine-learning scikit-learn

6
推荐指数
1
解决办法
6617
查看次数

标签 统计

machine-learning ×1

python ×1

scikit-learn ×1