我正在尝试在带有服务器的计算机上运行 Llama 2.0,它警告我,我的速度会变慢,因为我犯了一些我不知道的错误,但是它可以工作,但我不知道如何优化它
以下是功能代码
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
class LlamaChatBot:
def __init__(self, model_name ="daryl149/llama-2-7b-chat-hf"):
torch.cuda.empty_cache()
self.isGPU = torch.cuda.is_available()
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if self.isGPU:
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map='auto', load_in_4bit=True
)
else:
self.tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")
self.model = AutoModelForCausalLM.from_pretrained(model_name).to(self.device)
def generate_response(self, prompt):
if self.isGPU():
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to('cuda')
else: input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
generated_ids = self.model.generate(input_ids, max_length=1024)
generated_text = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(generated_text)
return generated_text
Run Code Online (Sandbox Code Playgroud)
警告 :
warnings.warn(f'Input type into Linear4bit is torch.float16, …Run Code Online (Sandbox Code Playgroud) machine-learning neural-network deep-learning keras tensorflow
我使用seaborn的线图根据数据进行绘制,其代码如下所示:
sns.lineplot( x=df["#Energy"], y=df["py"]+df["px"]+df["pz"])
Run Code Online (Sandbox Code Playgroud)
我得到的情节是
现在我想将其下方的区域涂成不透明的蓝色,我该怎么做,我在seaborn lineplot文档中找不到与此相关的任何内容,感谢所有帮助的努力