我想为Caret包创建的模型绘制决策边界.理想情况下,我想从Caret的任何分类器模型的一般案例方法.但是,我目前正在使用kNN方法.我在下面的代码中使用了UCI的葡萄酒质量数据集,这是我现在正在使用的.
我发现这种方法适用于R中的通用kNN方法,但无法弄清楚如何将其映射到Caret - > https://stats.stackexchange.com/questions/21572/how-to-plot-decision-边界的-AK近邻分类器从元素O/21602#21602
library(caret)
set.seed(300)
wine.r <- read.csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', sep=';')
wine.w <- read.csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv', sep=';')
wine.r$style <- "red"
wine.w$style <- "white"
wine <- rbind(wine.r, wine.w)
wine$style <- as.factor(wine$style)
formula <- as.formula(quality ~ .)
dummies <- dummyVars(formula, data = wine)
dummied <- data.frame(predict(dummies, newdata = wine))
dummied$quality <- wine$quality
wine <- dummied
numCols <- !colnames(wine) %in% c('quality', 'style.red', 'style.white')
low <- wine$quality <= 6
high <- wine$quality > 6
wine$quality[low] = "low"
wine$quality[high] = "high"
wine$quality <- as.factor(wine$quality)
indxTrain <- createDataPartition(y …Run Code Online (Sandbox Code Playgroud)