小编Jul*_*ard的帖子

进一步微调 Peft/LoRA 微调的 CausalLM 模型

我有点不确定如何继续讨论上述主题。

\n

基线是通过 Huggingface\xe2\x80\x99s 库创建的模型,作为 AutoModelForCausalLM 模型、PEFT 和 LoRA 方法,并随后合并权重。

\n

我现在想进一步微调模型而不丢失其原始属性 - 在这种情况下通过指令微调/前缀调整。

\n

我的方法如下:

\n
model = AutoModelForCausalLM.from_pretrained(\n        model_id,\n        use_cache=False if gradient_checkpointing else True\n        device_map="auto",\n        load_in_8bit=True,\n    )\n\nmodel = create_peft_config(model)\n\noutput_dir = "/tmp"\ntraining_args = TrainingArguments(\n        output_dir=output_dir,\n        overwrite_output_dir=True,\n        per_device_train_batch_size=per_device_train_batch_size,\n        per_device_eval_batch_size=per_device_train_batch_size,\n        bf16=bf16,\n        learning_rate=lr,\n        num_train_epochs=epochs,\n        gradient_checkpointing=gradient_checkpointing,\n        gradient_accumulation_steps=2,\n        logging_dir=f"{output_dir}/logs",\n        logging_strategy="steps",\n        logging_steps=10,\n        optim="adafactor",\n        save_strategy="epoch",\n        save_total_limit=3,\n        evaluation_strategy="epoch",\n        load_best_model_at_end=False,\n        no_cuda=False,\n        auto_find_batch_size=True\n)\n\ntrainer = Trainer(\n        model=model,\n        args=training_args,\n        train_dataset=dataset_train,\n        compute_metrics=compute_metrics,\n        preprocess_logits_for_metrics=preprocess_logits_for_metrics,\n        eval_dataset=dataset_eval,\n        data_collator=default_data_collator\n)\n\ntrainer.train()\n\ntrainer.model.save_pretrained(output_dir)\n\ndel model\ndel trainer\n\npeft_config = PeftConfig.from_pretrained(output_dir)\nmodel = AutoModelForCausalLM.from_pretrained(\n        peft_config.base_model_name_or_path,\n        load_in_8bit=False,\n        return_dict=True,\n        device_map="auto",\n        torch_dtype=torch.float16,\n        low_cpu_mem_usage=True,\n)\nmodel = PeftModel.from_pretrained(\n        model,\n        output_dir,\n        torch_dtype=torch.float16,\n …
Run Code Online (Sandbox Code Playgroud)

huggingface-transformers text-generation large-language-model peft

5
推荐指数
1
解决办法
4825
查看次数