小编del*_*358的帖子

当我使用生成器表达式插入数据并从网格上的常规网格> 2000次插入迭代器时,我收到一个MemError

这是我在stackoverflow的第一个问题,因为我开始使用Python3编写脚本.

应用

我制作了一个Python3脚本,用于在LS-Dyna中为有限元模拟编写可移动热源的负载定义.作为源,我具有离散化的3D发热率密度(W/cm ^ 3)场,定义有限元网格的坐标和热场中心随时间的位置.作为输出,我得到一个依赖于时间的加热功率,在每个有限元的元素编号之后排序.这已经用于合理的尺寸(200000个有限元,热场的3000个位置,热场中的400000个数据点).

问题

对于较大的有限元网格(4 000 000个元素),我的内存不足(60GB RAM,python3 64Bit).为了进一步说明这个问题,我准备了一个独立运行的最小例子.它生成一些人工测试数据,我使用它的有限元网格(实际上它不是常规网格)和热应用的新位置的迭代器.

import numpy as np
import math
from scipy.interpolate import RegularGridInterpolator
def main():
    dataCoordinateAxes,dataArray = makeTestData()
    meshInformationArray = makeSampleMesh()
    coordinates = makeSampleCoordinates()
    interpolateOnMesh(dataCoordinateAxes,dataArray,meshInformationArray,coordinates)

def makeTestData():
    x = np.linspace(-0.02,0.02,300)
    y = np.linspace(-0.02,0.02,300)
    z = np.linspace(-0.005,0.005,4)
    data = f(*np.meshgrid(x,y,z,indexing='ij',sparse=True))
    return (x,y,z),data

def f(x,y,z):
    scaling = 1E18
    sigmaXY = 0.01
    muXY = 0
    sigmaZ = 0.5
    muZ = 0.005
    return weight(x,1E-4,muXY,sigmaXY)*weight(y,1E-4,muXY,sigmaXY)*weight(z,0.1,muZ,sigmaZ)*scaling

def weight(x,dx,mu,sigma):
    result = np.multiply(np.divide(np.exp(np.divide(np.square(np.subtract(x,mu)),(-2*sigma**2))),math.sqrt(2*math.pi*sigma**2.)),dx)
    return result

def makeSampleMesh():
    meshInformation = [] …
Run Code Online (Sandbox Code Playgroud)

python iterator numpy data-processing python-3.x

5
推荐指数
1
解决办法
57
查看次数

标签 统计

data-processing ×1

iterator ×1

numpy ×1

python ×1

python-3.x ×1