小编Val*_*abe的帖子

警告lme4:模型无法与max | grad |收敛

我必须运行具有对数转换响应变量,作为固定效果的连续变量和嵌套随机效果的lmer:

first<-lmer(logterrisize~spm + (1|studyarea/teriid),
            data = Data_table_for_analysis_Character_studyarea,
            control=lmerControl(optimizer="Nelder_Mead",
                                 optCtrl=list(maxfun=1e4)))
Run Code Online (Sandbox Code Playgroud)

我收到此错误消息:长度错误(值<-as.numeric(value))== 1L:降级的VtV不是正定的

我尝试使用bobyqa()作为优化参数进行尝试,并收到以下警告消息:

1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : 
Model failed to converge with max|grad| = 0.753065 (tol = 0.002, component
1) 2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv,:
Model is nearly unidentifiable: very large eigenvalue-Rescale variables?
Run Code Online (Sandbox Code Playgroud)

我的摘要如下所示:

Linear mixed model fit by REML ['lmerMod'] 
Formula: logterrisize ~ spm + (1 studyarea/teriid) Data: Data_table_for_analysis_Character_studyareaControl: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)) REML criterion at convergence: -6079.6Scaled …
Run Code Online (Sandbox Code Playgroud)

optimization r lme4 mixed-models

2
推荐指数
1
解决办法
5225
查看次数

标签 统计

lme4 ×1

mixed-models ×1

optimization ×1

r ×1