我目前正在使用一维卷积神经网络对 Keras 中的多元时间序列进行分类。特别是,每个实例由 9 个等长的时间序列(每个 300 点)表示。
正如我在文献中读到的那样,当对图像使用 2D 卷积时,可以得到关于网络正在寻找的位置的提示,以便进行分类:例如,您可以使用所谓的类激活图,例如:
https://rajpurkar.github.io/mlx/visualizing-cnns/class_activation_maps.png
有没有类似的东西可以用来可视化给定的多元时间序列中最“有意义”的切片?
这是我当前的网络架构:
Input shape: 300 9
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_1 (Conv1D) (None, 292, 128) 10496
_________________________________________________________________
batch_normalization_1 (Batch (None, 292, 128) 512
_________________________________________________________________
activation_1 (Activation) (None, 292, 128) 0
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 58, 128) 0
_________________________________________________________________
conv1d_2 (Conv1D) (None, 50, 128) 147584
_________________________________________________________________
batch_normalization_2 (Batch (None, 50, 128) 512
_________________________________________________________________
activation_2 (Activation) (None, 50, 128) 0
_________________________________________________________________
max_pooling1d_2 (MaxPooling1 (None, 10, 128) 0 …Run Code Online (Sandbox Code Playgroud)