import random
import gym
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
import os
env = gym.make('CartPole-v0')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
batch_size = 32
n_episodes = 1000
output_dir = 'model_output/cartpole'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.9
self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.05
self._learning_rate = 0.01
self.model = …
Run Code Online (Sandbox Code Playgroud)