小编Yuk*_*uki的帖子

具有iid随机效应的泊松GLM的奇怪输出

我正在尝试在R中运行rjags(通过Rstudio)来估计模型的参数alpha&beta和超参数tau.nu:

y_i|x_i~pois(eta_i),
eta_i=exp(alpha + beta*x_i + nu_i),
nu_i~N(0,tau.nu)
Run Code Online (Sandbox Code Playgroud)

有我的代码:

#generating data
N = 1000
x = rnorm(N, mean=3,sd=1) 
nu = rnorm(N,0,0.01)
eta = exp(1 + 2*x + nu)
y = rpois(N,eta) 
data=data.frame(y=y,x=x)
###MCMC
library(rjags)
library(coda)
mod_string= "model {  
  for(i in 1:1000) {
    y[i]~dpois(eta[i])
    eta[i]=exp(alpha+beta*x[i]+nu[i])
    nu[i]~dnorm(0,tau.nu)
  }
  alpha  ~ dnorm(0,0.001)
  beta  ~ dnorm(0,0.001) 
  tau.nu ~ dgamma(0.01,0.01) 
}"

params = c("alpha","beta","tau.nu")

inits = function() {
  inits = list("alpha"=rnorm(1,0,100),"beta"=rnorm(1,0,80),"tau.nu"=rgamma(1,1,1))
}
mod = jags.model(textConnection(mod_string), data=data, inits=inits, n.chains =3)
update(mod,5000)
mod_sim = coda.samples(model=mod, …
Run Code Online (Sandbox Code Playgroud)

r jags rjags

8
推荐指数
1
解决办法
160
查看次数

标签 统计

jags ×1

r ×1

rjags ×1