小编aro*_*roN的帖子

更新堆栈时,属性 SecurityGroupIds 的值必须是字符串错误列表类型

我在尝试使用以下代码更新堆栈时收到 ROLLBACK_COMPLETE。在事件下,我没有收到错误,因为“属性 SecurityGroupIds 的值必须是字符串列表类型”。请帮助我找到解决方案。

第一个堆栈的 Mycode:

Resources:
  myvpc:
    Type: AWS::EC2::VPC
    Properties:
        CidrBlock: 10.0.0.0/16
        EnableDnsSupport: true
        EnableDnsHostnames: true
        InstanceTenancy: default
        Tags:
            - Key: Name
              Value: myvpc

 myinternetgateway:
    Type: AWS::EC2::InternetGateway
    Properties:
        Tags: 
            - Key: Name
              Value: mygtwy

 mygatewayattach:
    Type: AWS::EC2::VPCGatewayAttachment
    Properties:
        InternetGatewayId: !Ref myinternetgateway
        VpcId: !Ref myvpc

 mysubnet1:
    Type: AWS::EC2::Subnet
    Properties:
        AvailabilityZone: us-east-1a
        VpcId: !Ref myvpc
        CidrBlock: 10.0.1.0/24
        MapPublicIpOnLaunch: true

 Routetable:
    Type: AWS::EC2::RouteTable
    Properties:
        VpcId: !Ref myvpc

 Route:
    Type: AWS::EC2::Route
    DependsOn: myinternetgateway
    Properties:
        DestinationCidrBlock: 0.0.0.0/0
        GatewayId: !Ref myinternetgateway
        RouteTableId: !Ref Routetable

 SubnetARouteTableAssociation: …
Run Code Online (Sandbox Code Playgroud)

cloud amazon-ec2 amazon-web-services aws-cloudformation devops

6
推荐指数
1
解决办法
3万
查看次数

预期的二维数组,得到一维数组而不是错误

我收到错误为

“ValueError:预期的二维数组,而是得到一维数组:数组=[ 45000. 50000. 60000. 80000. 110000. 150000. 200000. 300000. 500000. 1000000. 1000000. 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000. ) 如果您的数据具有单个特征或 array.reshape(1, -1) 如果它包含单个样本。”

在执行以下代码时:

# SVR

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('Position_S.csv')
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values

 # Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)

# Fitting SVR to the dataset
from sklearn.svm …
Run Code Online (Sandbox Code Playgroud)

python machine-learning data-science

3
推荐指数
1
解决办法
2万
查看次数