我有下面这张图,我想把除点和三角形以外的所有东西都去掉,意思是横纵轴上的数字和小竖线,我该怎么做?
这是图片:
这是我的代码:
x0 = np.average(triangleEdges,axis=0,weights=np.array([0.2,0.1,0.7]))[0]
y0 = np.average(triangleEdges,axis=0,weights=np.array([0.2,0.1,0.7]))[1]
x1 = np.average(triangleEdges,axis=0,weights=np.array([0.5,0.1,0.7]))[0]
y1 = np.average(triangleEdges,axis=0,weights=np.array([0.5,0.1,0.7]))[1]
trace0 = go.Scatter(
x=[x0],
y=[y0],
marker = dict(
size = 15,
color = 'rgba(25, 181, 254, 1)',
line = dict(
width = 1,
color = 'rgb(0, 0, 0)'
)
)
)
trace1 = go.Scatter(
x=[x1],
y=[y1],
marker = dict(
size = 15,
color = 'rgba(152, 0, 0, .8)',
line = dict(
width = 1,
color = 'rgb(0, 0, 0)'
)
)
)
data = [trace0,trace1] …
Run Code Online (Sandbox Code Playgroud) 我想在每个包含 N 个训练点的批次上使用梯度下降训练神经网络。我希望这些批次只包含具有相同标签的点,而不是从训练集中随机采样。
例如,如果我使用 MNIST 进行训练,我希望有如下所示的批次:
batch_1 = {0,0,0,0,0,0,0,0}
batch_2 = {3,3,3,3,3,3,3,3}
batch_3 = {7,7,7,7,7,7,7,7}
Run Code Online (Sandbox Code Playgroud)
.....
等等。
我如何使用 pytorch 做到这一点?