使用Python发送电子邮件时遇到一个小问题:
#me == my email address
#you == recipient's email address
me = "some.email@gmail.com"
you = "some_email2@gmail.com"
# Create message container - the correct MIME type is multipart/alternative.
msg = MIMEMultipart('alternative')
msg['Subject'] = "Alert"
msg['From'] = me
msg['To'] = you
# Create the body of the message (a plain-text and an HTML version).
html = '<html><body><p>Hi, I have the following alerts for you!</p></body></html>'
# Record the MIME types of both parts - text/plain and text/html.
part2 = MIMEText(html, 'html')
# …Run Code Online (Sandbox Code Playgroud) 我正在使用MNIST教程中的代码:
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
hidden_units=[10, 20, 10],
n_classes=2,
model_dir="/tmp/iris_model")
classifier.fit(x=np.array(train, dtype = 'float32'),
y=np.array(y_tr, dtype = 'int64'),
steps=2000)
accuracy_score = classifier.evaluate(x=np.array(test, dtype = 'float32'),
y=y_test)["auc"]
print('AUC: {0:f}'.format(accuracy_score))
from tensorflow.contrib.learn import SKCompat
ds_test_ar = np.array(ds_test, dtype = 'float32')
ds_predict_tf = classifier.predict(input_fn = _my_predict_data)
print('Predictions: {}'.format(str(ds_predict_tf)))
Run Code Online (Sandbox Code Playgroud)
但最后我得到了以下结果而不是预测:
Predictions: <generator object DNNClassifier.predict.<locals>.<genexpr> at 0x000002CE41101CA8>
Run Code Online (Sandbox Code Playgroud)
我做错了什么?
我想创建一些tf.data.Dataset使用该from_generator()功能.我想向生成器函数(raw_data_gen)发送一个参数.这个想法是生成器函数将根据发送的参数产生不同的数据.通过这种方式,我希望raw_data_gen能够提供培训,验证或测试数据.
training_dataset = tf.data.Dataset.from_generator(raw_data_gen, (tf.float32, tf.uint8), ([None, 1], [None]), args=([1]))
validation_dataset = tf.data.Dataset.from_generator(raw_data_gen, (tf.float32, tf.uint8), ([None, 1], [None]), args=([2]))
test_dataset = tf.data.Dataset.from_generator(raw_data_gen, (tf.float32, tf.uint8), ([None, 1], [None]), args=([3]))
Run Code Online (Sandbox Code Playgroud)
我尝试以from_generator()这种方式调用时收到的错误消息是:
TypeError: from_generator() got an unexpected keyword argument 'args'
Run Code Online (Sandbox Code Playgroud)
这是raw_data_gen函数,虽然我不确定你是否需要这个,因为我的预感是问题是调用from_generator():
def raw_data_gen(train_val_or_test):
if train_val_or_test == 1:
#For every filename collected in the list
for filename, lab in training_filepath_label_dict.items():
raw_data, samplerate = soundfile.read(filename)
try: #assume the audio is stereo, …Run Code Online (Sandbox Code Playgroud) TensorFlow 提供 3 种不同格式的数据存储在tf.train.Feature. 这些是:
tf.train.BytesList
tf.train.FloatList
tf.train.Int64List
Run Code Online (Sandbox Code Playgroud)
我经常在tf.train.Int64List/tf.train.FloatList和tf.train.BytesList.
我在网上看到一些例子,它们将整数/浮点数转换为字节,然后将它们存储在tf.train.BytesList. 这比使用其他格式之一更可取吗?如果是这样,当您可以将它们转换为字节并使用时,为什么 TensorFlow 甚至提供tf.train.Int64List和tf.train.FloatList作为可选格式tf.train.BytesList?
谢谢你。
我想使用visual.TextStim将文本渲染到visual.Window的右侧.当我将TextStim的位置设置为0时:
my_text = visual.TextStim(win, pos=[0,0])
Run Code Online (Sandbox Code Playgroud)
文本显示在屏幕上.但当我改为:
my_text = visual.TextStim(win, pos=[50,0])
Run Code Online (Sandbox Code Playgroud)
例如.文本没有出现.我用python 3.6,psychopy 1.90.2试过这个.如何使用TextStim在visual.Window右侧显示文本刺激?
python ×5
tensorflow ×3
python-2.7 ×2
python-3.x ×2
dataformat ×1
email ×1
psychopy ×1
smtp ×1