我正在尝试将 LSTM 与 CNN 结合使用,但由于错误而卡住了。这是我试图实现的模型:
model=Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(28, 28,3), activation='relu'))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(LSTM(128, return_sequences=True,input_shape=(1,32), activation='relu'))
model.add(LSTM(256))
model.add(Dropout(0.25))
model.add(Dense(37))
model.compile(loss='categorical_crossentropy', optimizer='adam')
Run Code Online (Sandbox Code Playgroud)
错误发生在第一个 LSTM 层:
ERROR: Input 0 is incompatible with layer lstm_12: expected ndim=3, found ndim=2
Run Code Online (Sandbox Code Playgroud)