我知道 mse 将以相同的方式对待实际 - 预测和预测 - 实际。我想编写一个自定义损失函数,使得预测 > 实际的惩罚大于实际 > 预测 假设我将因预测 > 实际而受到 2 倍的惩罚。我将如何实现这样的功能
import numpy as np
from keras.models import Model
from keras.layers import Input
import keras.backend as K
from keras.engine.topology import Layer
from keras.layers.core import Dense
from keras import objectives
def create_model():
# define the size
input_size = 6
hidden_size = 15;
# definte the model
model = Sequential()
model.add(Dense(input_size, input_dim=input_size, kernel_initializer='normal', activation='relu'))
model.add(Dense(hidden_size, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
# mse is used as loss for the …Run Code Online (Sandbox Code Playgroud)