我有从512x512图像制作补丁的问题.我试图用stride 32提取64x64补丁,这是补丁wid大小的一半.
我发现scikit-learn extract_patches_2d函数可以从原始图像中提取2d补丁.
当我使用这个功能时,似乎功能提取补丁步幅1.
有什么方法可以提取32个补丁吗?
def load_train_data(self):
imgs_row, imgs_col = 512,512
train_list = []
train_img = []
label_list = []
label_img = []
train_path = 'C:\\Users\\Lee Doyle\\unet\\data\\Train'
label_path = 'C:\\Users\\Lee Doyle\\unet\\data\\Label'
######################Traindata################################
print('-' * 30)
print('load train images...')
print('-' * 30)
for i in glob.glob(train_path + '/*.[tT][iI][fF]'):
train_list.append(abspath(i))
print(len(train_list))
for i in train_list:
# print(i)
img = cv2.imread(i, cv2.IMREAD_GRAYSCALE)
# img=cv2.resize(img,(512,512))
#train_img = image.extract_patches_2d(img, (64,64))
train_img.append(img.astype(np.float32)/255.0)
#train_img.append(img.astype(np.float32)/255.0)
train_img = image.extract_patches_2d(img, (64,64))
train_img = np.array(train_img[i])
Run Code Online (Sandbox Code Playgroud)
谢谢您的帮助!