我实际上不知道我的代码有什么问题。有人可以帮忙吗?
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import KFold, cross_val_score
from sklearn.metrics import confusion_matrix,precision_recall_curve,auc,roc_auc_score,roc_curve,recall_score,classification_report
def printing_Kfold_scores(x_train_data,y_train_data):
fold = KFold(len(y_train_data),5,shuffle=False)
# Different C parameters
c_param_range = [0.01,0.1,1,10,100]
results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score'])
results_table['C_parameter'] = c_param_range
# the k-fold will give 2 lists: train_indices = indices[0], test_indices = indices[1]
j = 0
for c_param in c_param_range:
print('-------------------------------------------')
print('C parameter: ', c_param)
print('-------------------------------------------')
print('')
recall_accs = []
for iteration, indices in enumerate(fold,start=1):
# Call the logistic regression model …Run Code Online (Sandbox Code Playgroud) 它只是报告:
Cholmod 错误“X 和/或 Y 的尺寸错误”位于文件 ../MatrixOps/cholmod_sdmult.c,第 90 行。
我不知道为什么。
x.m <- data.matrix(train[,c(1:43)])
x.m [is.na(x.m)] <- 0
y.m <- train$NPL
cv.m <-data.matrix(cv)
set.seed(356)
cvfit.m.lasso = cv.glmnet(x.m, y.m,
family = "binomial",
alpha = 1,
type.measure = "class")
par(mfrow=c(1,2))
plot(cvfit.m.lasso, main = "Lasso")
coef(cvfit.m.lasso, s = "lambda.min")
predTrain.M = predict(cvfit.m.lasso, newx=cv.m, type="class")
table(cv$NPL, predTrain.M)
Run Code Online (Sandbox Code Playgroud)