小编Sou*_*wal的帖子

Unet:多类图像分割

我最近开始学习图像分割和UNet。我正在尝试进行多类图像分割,其中我有 7 个类,输入是 (256, 256, 3) rgb 图像,输出是 (256, 256, 1) 灰度图像,其中每个强度值对应于一个类。我正在做像素级的softmax。我使用稀疏分类交叉熵以避免进行 One Hot Encoding。

def soft1(x):
    return keras.activations.softmax(x, axis = -1)

def conv2d_block(input_tensor, n_filters, kernel_size = 3, batchnorm = True):

    x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\
              kernel_initializer = 'he_normal', padding = 'same')(input_tensor)
    if batchnorm:
        x = BatchNormalization()(x)
    x = Activation('relu')(x)


    x = Conv2D(filters = n_filters, kernel_size = (kernel_size, kernel_size),\
              kernel_initializer = 'he_normal', padding = 'same')(input_tensor)
    if batchnorm:
        x = BatchNormalization()(x)
    x = Activation('relu')(x)

    return x

def …
Run Code Online (Sandbox Code Playgroud)

image-segmentation deep-learning keras

4
推荐指数
1
解决办法
3325
查看次数

标签 统计

deep-learning ×1

image-segmentation ×1

keras ×1