我花了几个小时尝试设置Tensorflow-hub模块“通用语句编码器”的Tensorflow服务。这里有一个类似的问题:
如何使用TensorFlow服务使TensorFlow集线器嵌入成为可服务的?
我一直在Windows计算机上执行此操作。
这是我用来构建模型的代码:
import tensorflow as tf
import tensorflow_hub as hub
MODEL_NAME = 'test'
VERSION = 1
SERVE_PATH = './models/{}/{}'.format(MODEL_NAME, VERSION)
with tf.Graph().as_default():
module = hub.Module("https://tfhub.dev/google/universal-sentence-
encoder/1")
text = tf.placeholder(tf.string, [None])
embedding = module(text)
init_op = tf.group([tf.global_variables_initializer(),
tf.tables_initializer()])
with tf.Session() as session:
session.run(init_op)
tf.saved_model.simple_save(
session,
SERVE_PATH,
inputs = {"text": text},
outputs = {"embedding": embedding},
legacy_init_op = tf.tables_initializer()
)
Run Code Online (Sandbox Code Playgroud)
我已经到了运行以下行的地步:
saved_model_cli show --dir ${PWD}/models/test/1 --tag_set serve --signature_def serving_default
Run Code Online (Sandbox Code Playgroud)
给我以下结果:
The given SavedModel SignatureDef contains the following input(s):
inputs['text'] tensor_info:
dtype: …Run Code Online (Sandbox Code Playgroud)