小编Shu*_*wal的帖子

如何使用 word2vec 进行文本分类

我想使用 word2vec 执行文本分类。我得到了词向量。

ls = []
sentences = lines.split(".")
for i in sentences:
    ls.append(i.split())
model = Word2Vec(ls, min_count=1, size = 4)
words = list(model.wv.vocab)
print(words)
vectors = []
for word in words:
    vectors.append(model[word].tolist())
data = np.array(vectors)
data
Run Code Online (Sandbox Code Playgroud)

输出:

array([[ 0.00933912,  0.07960335, -0.04559333,  0.10600036],
       [ 0.10576613,  0.07267512, -0.10718666, -0.00804013],
       [ 0.09459028, -0.09901826, -0.07074171, -0.12022413],
       [-0.09893986,  0.01500741, -0.04796079, -0.04447284],
       [ 0.04403428, -0.07966098, -0.06460238, -0.07369237],
       [ 0.09352681, -0.03864434, -0.01743148,  0.11251986],.....])
Run Code Online (Sandbox Code Playgroud)

我如何进行分类(产品和非产品)?

python-3.x gensim text-classification word2vec

10
推荐指数
2
解决办法
2万
查看次数