当我运行 React.js 前端时,我收到此警告:
index.js:1446 Warning: Failed prop type: The prop `children` is marked as required in `InputAdornment`, but its value is `undefined`.
in InputAdornment (created by WithStyles(InputAdornment))
in WithStyles(InputAdornment) (at TopControls.js:101)
in div (created by InputBase)
in InputBase (created by Context.Consumer)
in WithFormControlContext(InputBase) (created by WithStyles(WithFormControlContext(InputBase)))
in WithStyles(WithFormControlContext(InputBase)) (created by Input)
in Input (created by WithStyles(Input))
in WithStyles(Input) (created by TextField)
in div (created by FormControl)
in FormControl (created by WithStyles(FormControl))
in WithStyles(FormControl) (created by TextField)
in TextField (at TopControls.js:91) …
Run Code Online (Sandbox Code Playgroud) 我有两个 React 组件,我希望它们彼此水平对齐。我使用 Material-UI 的 Grid 来对齐组件(但也欢迎其他解决方案)。问题是组件InputVariables
和Chart
放置在彼此的顶部(作为两行),而不是在单行中水平对齐。我究竟做错了什么?
当前对齐:
| InputVariables |
| Chart |
| Button |
Run Code Online (Sandbox Code Playgroud)
所需对齐:
| InputVariables | Chart |
| Button |
Run Code Online (Sandbox Code Playgroud)
主要成分:
import React from 'react';
import PropTypes from 'prop-types';
import withStyles from '@material-ui/core/styles/withStyles';
import CssBaseline from '@material-ui/core/CssBaseline';
import Grid from '@material-ui/core/Grid';
import AppBar from '@material-ui/core/AppBar';
import Toolbar from '@material-ui/core/Toolbar';
import Paper from '@material-ui/core/Paper';
import Button from '@material-ui/core/Button';
import Typography from '@material-ui/core/Typography';
import Card from '@material-ui/core/Card';
import CardActionArea from '@material-ui/core/CardActionArea';
import …
Run Code Online (Sandbox Code Playgroud) 我正在使用带有 Tensorflow 后端的 Keras 开发多类分类问题(4 个类)的模型。的值y_test
具有 2D 格式:
0 1 0 0
0 0 1 0
0 0 1 0
Run Code Online (Sandbox Code Playgroud)
这是我用来计算平衡精度的函数:
def my_metric(targ, predict):
val_predict = predict
val_targ = tf.math.argmax(targ, axis=1)
return metrics.balanced_accuracy_score(val_targ, val_predict)
Run Code Online (Sandbox Code Playgroud)
这是模型:
hidden_neurons = 50
timestamps = 20
nb_features = 18
model = Sequential()
model.add(LSTM(
units=hidden_neurons,
return_sequences=True,
input_shape=(timestamps,nb_features),
dropout=0.15
#recurrent_dropout=0.2
)
)
model.add(TimeDistributed(Dense(units=round(timestamps/2),activation='sigmoid')))
model.add(Dense(units=hidden_neurons,
activation='sigmoid'))
model.add(Flatten())
model.add(Dense(units=nb_classes,
activation='softmax'))
model.compile(loss="categorical_crossentropy",
metrics = [my_metric],
optimizer='adadelta')
Run Code Online (Sandbox Code Playgroud)
当我运行此代码时,出现此错误:
-------------------------------------------------- ------------------------- TypeError Traceback (最近调用 last) in () 30 model.compile(loss="categorical_crossentropy", 31 …
我需要将列添加到 DataFrame df
。所有新列的值应沿着 的所有行固定df
:
df = {
"NUM":[1,2],
"WAKE":["M","H"],
"DISTANCE":[780,500]
}
new_df = pd.DataFrame(df)
Run Code Online (Sandbox Code Playgroud)
这就是我尝试添加具有固定值的新多列的方法。
for column, row in new_df.iterrows():
row["TEMPERATURE"] = 20
row["VISIBILITY"] = 5000
row["WIND"] = 10
Run Code Online (Sandbox Code Playgroud)
此代码不会失败,但不会创建新列。
预期结果:
NUM WAKE DISTANCE TEMPERATURE VISIBILITY WIND
1 M 780 20 5000 10
2 H 500 20 5000 10
Run Code Online (Sandbox Code Playgroud) 有没有办法在Material-UIoptions
的下拉菜单中按字母顺序显示?
我知道可以简单地使用 来对数组进行排序arr.sort()
。但是,如果我这样做const options = [...].sort()
,那么我仍然会在下拉菜单中看到未排序的值。
const options = [
{label:"B",value:8033.86},
{label:"A",value:483.93},
{label:"Z",value:1246.3},
{label:"C",value:145.0},
{label:"E",value:244.5}
]
<Grid item xs={true}>
<FormControl
className={this.props.styles.formControl}
margin="normal">
<InputLabel shrink htmlFor="distanceTarget-label-placeholder">
Target:
</InputLabel>
<Select
onChange={(event) => this.props.handleChange("distanceTarget", event)}
value={this.props.state.distanceTarget}
input={<Input name="distanceTarget" id="distanceTarget-label-placeholder" />}
displayEmpty="true"
name="distanceTarget"
>
{options && options.length && options.map((option, i) => {
return <MenuItem value={option.value} key={i}>{option.label}</MenuItem>
})}
</Select>
</FormControl>
</Grid>
Run Code Online (Sandbox Code Playgroud) 鉴于熊猫数据框df
,我需要选择那些只有正值的列。
df =
Age Fare Dev
21 10 -1
35 9 0
28 12 1
Run Code Online (Sandbox Code Playgroud)
我的第一个想法是使用df.describe()
然后只选择那些最小值大于或等于 0 的列。但我在实现上陷入了困境。显然row.columns
不起作用,因为 Series 没有columns
属性。
properties = df.describe()
positive_cols = []
for index,row in properties.iterrows():
for col in row.columns:
print(col)
Run Code Online (Sandbox Code Playgroud) 我在ReactJs
调用中创建了一个主要组件MainPage
(使用 Material-UI)。
import React from 'react';
import Grid from '@material-ui/core/Grid';
import Button from '@material-ui/core/Button';
import CssBaseline from '@material-ui/core/CssBaseline';
import Card from '@material-ui/core/Card';
import CardContent from '@material-ui/core/CardContent';
import withStyles from '@material-ui/core/styles/withStyles';
const styles = theme => ({
card: {
minWidth: 350,
},
button: {
fontSize: '12px',
margin: theme.spacing.unit,
minWidth: 350
},
extendedIcon: {
marginRight: theme.spacing.unit,
}
});
class MainPage extends React.Component {
constructor() {
super();
}
render() {
const {
classes
} = this.props;
return ( < …
Run Code Online (Sandbox Code Playgroud) 当我df.show()
打印 DataFrame 行的内容时,出现此错误:
Caused by: com.fasterxml.jackson.databind.JsonMappingException: Incompatible Jackson version: 2.8.9
at com.fasterxml.jackson.module.scala.JacksonModule$class.setupModule(JacksonModule.scala:64)
at com.fasterxml.jackson.module.scala.DefaultScalaModule.setupModule(DefaultScalaModule.scala:19)
at com.fasterxml.jackson.databind.ObjectMapper.registerModule(ObjectMapper.java:747)
at org.apache.spark.rdd.RDDOperationScope$.<init>(RDDOperationScope.scala:82)
at org.apache.spark.rdd.RDDOperationScope$.<clinit>(RDDOperationScope.scala)
Run Code Online (Sandbox Code Playgroud)
这就是我创建的方式df
:
object Test extends App {
val spark = SparkSession.builder()
.config("es.nodes", "XXX.XX.XX.XX")
.config("es.port", "9200")
.config("es.nodes.wan.only", "false")
.config("es.resource","myIndex")
.appName("Test")
.master("local[*]")
.getOrCreate()
val df_source = spark
.read.format("org.elasticsearch.spark.sql")
.option("pushdown", "true")
.load("myIndex")
df_source.show(5)
}
Run Code Online (Sandbox Code Playgroud)
我不在我的build.sbt
.
更新:
import sbtassembly.AssemblyPlugin.autoImport.assemblyOption
name := "test"
lazy val spark = "org.apache.spark"
lazy val typesafe = "com.typesafe.akka"
val sparkVersion = "2.2.0"
val elasticSparkVersion = …
Run Code Online (Sandbox Code Playgroud) 这是我的熊猫数据帧:
Area Gender Quantity
XXX Men 115
XXX Men 105
XXX Men 114
YYY Men 100
YYY Men 90
YYY Men 95
YYY Men 101
XXX Women 120
XXX Women 122
XXX Women 115
XXX Women 117
YYY Women 91
YYY Women 90
YYY Women 90
Run Code Online (Sandbox Code Playgroud)
这就是我创建箱线图的方式。
import seaboard as sns
import matplotlib.pyplot as pat
fig, ax = plt.subplots(figsize=(15,11))
ax = sns.boxplot(x="Area", y="Quantity", hue="Gender", data=df, palette="Set3")
Run Code Online (Sandbox Code Playgroud)
我想Area
按Quantity
递增顺序按中位数对组进行排序。我该怎么做?
我有以下功能:
def getData(spark: SparkSession,
indices: Option[String]): Option[DataFrame] = {
indices.map{
ind =>
spark
.read
.format("org.elasticsearch.spark.sql")
.load(ind)
}
}
Run Code Online (Sandbox Code Playgroud)
此函数返回Option[DataFrame]
.
然后我想使用这个函数如下:
val df = getData(spark, indices)
df.persist(StorageLevel.MEMORY_AND_DISK)
Run Code Online (Sandbox Code Playgroud)
当然最后两行代码不会编译,因为df
可能是None
.None
在Scala中处理输出的惯用方法是什么?我想抛出异常并停止程序,如果df
是None.否则我想要persist
它.
我有以下代码生成嵌套字典.
import random
import numpy as np
dict1 = {}
for i in range(0,2):
dict2 = {}
for j in range(0,3):
dict2[j] = random.randint(1,10)
dict1[i] = dict2
Run Code Online (Sandbox Code Playgroud)
例如,它可以生成以下内容dict1
:
{0: {0: 7, 1: 2, 2: 5}, 1: {0: 3, 1: 10, 2: 10}}
Run Code Online (Sandbox Code Playgroud)
我想找到固定密钥的最小值的子密钥.例如,对于固定密钥0
,嵌套字典值中的最小值是2
指子密钥1
.因此结果应该是1
:
result=find_min(dict1[0])
result
1
Run Code Online (Sandbox Code Playgroud)
我该如何开发这样的find_min
功能?
python ×5
javascript ×4
reactjs ×4
material-ui ×3
pandas ×3
scala ×2
apache-spark ×1
keras ×1
matplotlib ×1
numpy ×1
python-3.x ×1
scikit-learn ×1
seaborn ×1
tensorflow ×1