我正在尝试使用功能性 API 构建一个接受多个输入和多个输出的模型。我按照这个来创建代码。
def create_model_multiple():
input1 = tf.keras.Input(shape=(13,), name = 'I1')
input2 = tf.keras.Input(shape=(6,), name = 'I2')
hidden1 = tf.keras.layers.Dense(units = 4, activation='relu')(input1)
hidden2 = tf.keras.layers.Dense(units = 4, activation='relu')(input2)
merge = tf.keras.layers.concatenate([hidden1, hidden2])
hidden3 = tf.keras.layers.Dense(units = 3, activation='relu')(merge)
output1 = tf.keras.layers.Dense(units = 2, activation='softmax', name ='O1')(hidden3)
output2 = tf.keras.layers.Dense(units = 2, activation='softmax', name = 'O2')(hidden3)
model = tf.keras.models.Model(inputs = [input1,input2], outputs = [output1,output2])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
Run Code Online (Sandbox Code Playgroud)
我的 model.fit 命令如下所示:
history = model.fit({'I1':train_data, 'I2':new_train_data},
{'O1':train_labels, 'O2': …Run Code Online (Sandbox Code Playgroud) 我正在尝试阅读来自 gmail 帐户的所有未读电子邮件。上面的代码能够建立连接但无法获取电子邮件。
我想打印每封电子邮件的内容。
我收到错误,因为无法将 int 连接到字节。
代码:
import smtplib
import time
import imaplib
import email
def read_email_from_gmail():
mail = imaplib.IMAP4_SSL('imap.gmail.com')
mail.login('my_mail','my_pwd')
mail.select('inbox')
result, data = mail.search(None, 'ALL')
mail_ids = data[0]
id_list = mail_ids.split()
first_email_id = int(id_list[0])
latest_email_id = int(id_list[-1])
for i in range(latest_email_id,first_email_id, -1):
result, data = mail.fetch(i, '(RFC822)' )
for response_part in data:
if isinstance(response_part, tuple):
msg = email.message_from_string(response_part[1])
email_subject = msg['subject']
email_from = msg['from']
print ('From : ' + email_from + '\n')
print ('Subject : ' + …Run Code Online (Sandbox Code Playgroud) 使用 keras 中的 image_dataset_from_directory 创建图像数据集后,如何以 numpy 格式从数据集中获取可以使用 pyplot.imshow 显示的第一个图像?
import tensorflow as tf
import matplotlib.pyplot as plt
test_data = tf.keras.preprocessing.image_dataset_from_directory(
"C:\\Users\\Admin\\Downloads\\kagglecatsanddogs_3367a",
validation_split=.1,
subset='validation',
seed=123)
for e in test_data.as_numpy_iterator():
print(e[1:])
Run Code Online (Sandbox Code Playgroud) 我目前正在使用 anaconda 4.8.3,想要显示决策树图,我已经在 anaconda 中安装了 graphviz 和 pydotplus 库,而不是这个我收到错误“ModuleNotFoundError:没有名为“sklearn.externals.six”的模块。这是我的代码:
from sklearn.tree import DecisionTreeClassifier
from IPython.display import Image
from sklearn.externals.six import StringIO
from sklearn.tree import export_graphviz
import pydot
features = list(df.columns[1:])
features
Run Code Online (Sandbox Code Playgroud)
这是我的错误:
ModuleNotFoundError Traceback (most recent call last)
<ipython-input-19-0b3416ce7fda> in <module>
1 from IPython.display import Image
---> 2 from sklearn.externals.six import StringIO
3 from sklearn.tree import export_graphviz
4 import pydot
5 ModuleNotFoundError: No module named 'sklearn.externals.six'
Run Code Online (Sandbox Code Playgroud)