小编Pes*_*r53的帖子

如何通过plotly和python使用色阶调色板?

我正在尝试更改我用plotly和cufflinks在python中绘制的堆栈条形图的颜色(cufflinks库允许直接从数据帧中绘制图表,这是非常有用的)。

如下图(我用的是jupyter笔记本):

import plotly.plotly as py
import cufflinks as cf

cf.set_config_file(offline=True, world_readable=True, theme='white')

df = pd.DataFrame(np.random.rand(10, 4), columns=['A', 'B', 'C', 'D'])
df.iplot(kind='bar', barmode='stack')
Run Code Online (Sandbox Code Playgroud)

如何使用上面的代码实现新的调色板?我想使用“Viridis”调色板。我还没有找到一种方法来修改图表的颜色或使用调色板自动为不同的条形图堆栈设置不同的颜色。你们中有人知道该怎么做吗?

非常感谢您的帮助,

python colors pandas plotly

3
推荐指数
1
解决办法
1万
查看次数

熊猫日期时间索引选择

我有以下数据帧:

date  = ['2015-02-03 23:00:00','2015-02-03 23:30:00','2015-02-04 00:00:00','2015-02-04 00:30:00','2015-02-04 01:00:00','2015-02-04 01:30:00','2015-02-04 02:00:00','2015-02-04 02:30:00','2015-02-04 03:00:00','2015-02-04 03:30:00','2015-02-04 04:00:00','2015-02-04 04:30:00','2015-02-04 05:00:00','2015-02-04 05:30:00','2015-02-04 06:00:00','2015-02-04 06:30:00','2015-02-04 07:00:00','2015-02-04 07:30:00','2015-02-04 08:00:00','2015-02-04 08:30:00','2015-02-04 09:00:00','2015-02-04 09:30:00','2015-02-04 10:00:00','2015-02-04 10:30:00','2015-02-04 11:00:00','2015-02-04 11:30:00','2015-02-04 12:00:00','2015-02-04 12:30:00','2015-02-04 13:00:00','2015-02-04 13:30:00','2015-02-04 14:00:00','2015-02-04 14:30:00','2015-02-04 15:00:00','2015-02-04 15:30:00','2015-02-04 16:00:00','2015-02-04 16:30:00','2015-02-04 17:00:00','2015-02-04 17:30:00','2015-02-04 18:00:00','2015-02-04 18:30:00','2015-02-04 19:00:00','2015-02-04 19:30:00','2015-02-04 20:00:00','2015-02-04 20:30:00','2015-02-04 21:00:00','2015-02-04 21:30:00','2015-02-04 22:00:00','2015-02-04 22:30:00','2015-02-04 23:00:00','2015-02-04 23:30:00']
value = [33.24  , 31.71  , 34.39  , 34.49  , 34.67  , 34.46  , 34.59  , 34.83  , 35.78  , 33.03  , 35.49  , 33.79  , …
Run Code Online (Sandbox Code Playgroud)

python datetime pandas

2
推荐指数
1
解决办法
101
查看次数

将列解析为日期时间的最快方法

我有超过40万行的以下数据框。

df = pd.DataFrame({'date' : ['03/02/2015 23:00',
'03/02/2015 23:30',
'04/02/2015 00:00',
'04/02/2015 00:30',
'04/02/2015 01:00',
'04/02/2015 01:30',
'04/02/2015 02:00',
'04/02/2015 02:30',
'04/02/2015 03:00',
'04/02/2015 03:30',
'04/02/2015 04:00',
'04/02/2015 04:30',
'04/02/2015 05:00',
'04/02/2015 05:30',
'04/02/2015 06:00',
'04/02/2015 06:30',
'04/02/2015 07:00']})
Run Code Online (Sandbox Code Playgroud)

我正在尝试尽快解析csv文件在pandas中的日期列。我知道如何使用read_csv做到这一点,但这需要很多时间!另外,我尝试了以下方法,但效果非常慢:df['dateTimeFormat'] = pd.to_datetime(df['date'],dayfirst=True)

我怎样才能高效,快速地将date列解析为datetime?

非常感谢您的帮助,

皮埃尔

datetime parsing pandas

1
推荐指数
1
解决办法
1093
查看次数

标签 统计

pandas ×3

datetime ×2

python ×2

colors ×1

parsing ×1

plotly ×1