对来自 Keras 模型的 Multiclass 输出使用自定义评分会为 cross_val_score 或 GridSearchCV 返回相同的错误,如下所示(它在 Iris 上,因此您可以直接运行它进行测试):
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
from keras.wrappers.scikit_learn import KerasClassifier
iris = datasets.load_iris()
X= iris.data
Y = to_categorical(iris.target)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.8, random_state=1000)
def create_model(optimizer='rmsprop'):
model = Sequential()
model.add(Dense(8,activation='relu',input_shape = (4,)))
model.add(Dense(3,activation='softmax'))
model.compile(optimizer = optimizer,
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
model = KerasClassifier(build_fn=create_model,
epochs=10,
batch_size=5,
verbose=0) …Run Code Online (Sandbox Code Playgroud)