我想发送一个大型pandas.DataFrame到运行MS SQL的远程服务器.我现在的方法是将data_frame对象转换为元组列表,然后使用pyODBC的executemany()函数将其发送出去.它是这样的:
import pyodbc as pdb
list_of_tuples = convert_df(data_frame)
connection = pdb.connect(cnxn_str)
cursor = connection.cursor()
cursor.fast_executemany = True
cursor.executemany(sql_statement, list_of_tuples)
connection.commit()
cursor.close()
connection.close()
Run Code Online (Sandbox Code Playgroud)
然后我开始怀疑使用data_frame.to_sql()方法是否可以加速(或至少更具可读性).我想出了以下解决方案:
import sqlalchemy as sa
engine = sa.create_engine("mssql+pyodbc:///?odbc_connect=%s" % cnxn_str)
data_frame.to_sql(table_name, engine, index=False)
Run Code Online (Sandbox Code Playgroud)
现在代码更具可读性,但上传速度至少慢150倍 ......
有没有办法fast_executemany在使用SQLAlchemy时翻转?
我正在使用pandas-0.20.3,pyODBC-4.0.21和sqlalchemy-1.1.13.