我创建了以下神经网络:
def init_weights(m, n=1):
"""
initialize a matrix/vector of weights with xavier initialization
:param m: out dim
:param n: in dim
:return: matrix/vector of random weights
"""
limit = (6 / (n * m)) ** 0.5
weights = np.random.uniform(-limit, limit, size=(m, n))
if n == 1:
weights = weights.reshape((-1,))
return weights
def softmax(v):
exp = np.exp(v)
return exp / np.tile(exp.sum(1), (v.shape[1], 1)).T
def relu(x):
return np.maximum(x, 0)
def sign(x):
return (x > 0).astype(int)
class Model:
"""
A class for neural …Run Code Online (Sandbox Code Playgroud)