小编Adi*_*wal的帖子

Keras fit_generator验证数据类型错误:“ float”对象无法解释为整数

我正在尝试运行Ning-Ding的CUHK03 Person Re-ID脚本(使用Keras实现Ahmed等人的论文),请参见https://github.com/Ning-Ding/Implementation-CVPR2015-CNN-for -ReID

错误文本如下:

TypeError Traceback (most recent call last)
in ()

    ----> 1 main("E:\DL\cuhk-03.h5")

in main(dataset_path)

    17 model = generate_model()
    18 model = compile_model(model)
    ---> 19 train(model, dataset_path)
    20
    21 def train(model,

in train(model, h5_path, weights_name, train_num, one_epoch, epoch_num, flag_random, random_pattern, flag_train, flag_val, which_val_data, nb_val_samples)
    39 rand_x = np.random.rand()
    40 flag_train = random_pattern(rand_x)
    ---> 41 model.fit_generator(Data_Generator.flow(f,flag = flag_train),one_epoch,epoch_num,validation_data=Data_Generator.flow(f,train_or_validation=which_val_data,flag=flag_val),nb_val_samples=nb_val_samples)
    42 Rank1s.append(round(cmc(model)[0],2))
    43 print (Rank1s)

~\Anaconda3\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)

    89 warnings.warn('Update your ' + object_name + 90 ' call …
Run Code Online (Sandbox Code Playgroud)

anaconda deep-learning keras

4
推荐指数
1
解决办法
1751
查看次数

标签 统计

anaconda ×1

deep-learning ×1

keras ×1