根据https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
我不明白为什么 VGG 模型采用 512 * 7 * 7 全连接层的 input_size 。最后一个卷积层是
代码在上面的链接中。
class VGG(nn.Module):
def __init__(self, features, num_classes=1000, init_weights=True):
super(VGG, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
Run Code Online (Sandbox Code Playgroud)