我在Google Colaboratory上运行此代码,我收到寄存器解码器的错误
image_data = dset.ImageFolder(root="drive/SemanticDataset/train/", transform = transforms.Compose([
transforms.Scale(size=img_size),
transforms.CenterCrop(size=(img_size,img_size*2)),
transforms.ToTensor(),
]))
enter code herelabel_data = dset.ImageFolder(root="drive/SemanticDataset/label/", transform = transforms.Compose([
transforms.Scale(size=img_size),
transforms.CenterCrop(size=(img_size,img_size*2)),
transforms.ToTensor(),
]))
image_batch = data.DataLoader(image_data, batch_size=batch_size, shuffle=False, num_workers=2)
label_batch = data.DataLoader(label_data, batch_size=batch_size, shuffle=False, num_workers=2)
for i in range(epoch):
for _, (image, label) in enumerate(zip(image_batch, label_batch)):
optimizer.zero_grad()
x = Variable(image, requires_grad=True).cuda()
y = Variable(label).cuda()
out = model.forward(x)
loss = loss_func(out, y)
loss.backward()
optimizer.step()
if _ % 100 == 0:
print("Epoch: "+i+"| Loss: " , loss)
Run Code Online (Sandbox Code Playgroud)