我有半连续数据(许多精确的零和连续的正结果),我正在尝试建模。我从 Zuur 和 Ieno 的《R 中零膨胀模型初学者指南》中学到了关于大量零质量的建模数据的知识,该指南区分了零膨胀伽玛模型和他们所描述的“零改变”伽玛模型作为障碍模型,结合了零点的二项式分量和正连续结果的伽玛分量。我一直在探索包ziGamma中选项的使用glmmTMB,并将所得系数与我按照 Zuur 书中的说明(第 128-129 页)构建的障碍模型进行比较,但它们并不相符。我无法理解为什么不这样做,因为我知道伽玛分布不能呈现零值,所以我认为每个零膨胀伽玛模型在技术上都是一个障碍模型。谁能为我阐明这一点?请参阅代码下方有关模型的更多注释。
library(tidyverse)
library(boot)
library(glmmTMB)
library(parameters)
### DATA
id <- rep(1:75000)
age <- sample(18:88, 75000, replace = TRUE)
gender <- sample(0:1, 75000, replace = TRUE)
cost <- c(rep(0, 30000), rgamma(n = 37500, shape = 5000, rate = 1),
sample(1:1000000, 7500, replace = TRUE))
disease <- sample(0:1, 75000, replace = TRUE)
time <- sample(30:3287, 75000, replace = TRUE)
df <- data.frame(cbind(id, disease, age, gender, cost, time))
# …Run Code Online (Sandbox Code Playgroud)