小编Pee*_*tah的帖子

super(type, obj): obj 必须是 Keras 中 type 的实例或子类型

我实现了以下使用带有 Tensorflow 后端的 Keras 从头开始​​构建微型 yolo v2

我的代码在 Keras 2.1.5 中运行良好但是当我更新到 Keras 2.1.6 时我遇到了错误

""kernel_constraint=无,

TypeError: super(type, obj): obj must be an instance or subtype of type "" 请帮帮我,非常感谢

import tensorflow as tf
import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten, 
Reshape, LeakyReLU, BatchNormalization 

def yolo():
    model = Sequential()
    model.add(Conv2D(16,(3,3), padding='same',input_shape=(416,416,3),data_format='channels_last'))
    model.add(LeakyReLU(alpha=0.1))
    model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Conv2D(32,(3,3), padding='same'))
    model.add(BatchNormalization(axis=-1))
    model.add(LeakyReLU(alpha=0.1))
    model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Conv2D(64,(3,3), padding='same'))
    model.add(BatchNormalization(axis=-1))
    model.add(LeakyReLU(alpha=0.1))
    model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Conv2D(128,(3,3), padding='same'))
    model.add(BatchNormalization(axis=-1))
    model.add(LeakyReLU(alpha=0.1))
    model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Conv2D(128,(3,3), padding='same')) …
Run Code Online (Sandbox Code Playgroud)

super deep-learning keras tensorflow

5
推荐指数
1
解决办法
4525
查看次数

标签 统计

deep-learning ×1

keras ×1

super ×1

tensorflow ×1