小编use*_*759的帖子

逆透视变换?

我试图从给定的图像中找到鸟瞰图像.我也有旋转和翻译(也是内在矩阵)将它转换成鸟瞰平面.我的目标是找到逆单应矩阵(3x3).

rotation_x = np.asarray([[1,0,0,0],
                        [0,np.cos(R_x),-np.sin(R_x),0],
                        [0,np.sin(R_x),np.cos(R_x),0],
                        [0,0,0,1]],np.float32)

translation = np.asarray([[1, 0, 0, 0],
                         [0, 1, 0, 0 ],
                         [0, 0, 1, -t_y/(dp_y * np.sin(R_x))],
                         [0, 0, 0, 1]],np.float32)

intrinsic = np.asarray([[s_x * f / (dp_x  ),0, 0, 0],
                       [0, 1 * f / (dp_y ) ,0, 0 ],
                       [0,0,1,0]],np.float32)

#The Projection matrix to convert the image coordinates to 3-D domain from (x,y,1) to (x,y,0,1); Not sure if this is the right approach
projection = np.asarray([[1, 0, 0],
                        [0, 1, 0], …
Run Code Online (Sandbox Code Playgroud)

opencv projection computer-vision homography

2
推荐指数
1
解决办法
1112
查看次数

标签 统计

computer-vision ×1

homography ×1

opencv ×1

projection ×1