我能够使用以下命令显示美国数据地理每个部分的标记(以美国数据为例,因为无法显示工作数据结果):
import dload
from shapely.geometry import shape
import geopandas as gpd
import pandas as pd
import folium
json_string = 'https://raw.githubusercontent.com/datasets/geo-admin1-us/master/data/admin1-us.geojson'
j = dload.json(json_string)
gdf_usa = gpd.GeoDataFrame.from_features(j["features"])
gdf_usa.head()
gdf_usa_new = gpd.GeoDataFrame(gdf_usa, crs="EPSG:4326", geometry='geometry')
usa_map = gdf_usa_new.explore(tiles='CartoDB positron')
usa_map
gdf_usa_new["long"] = gdf_usa_new.to_crs(epsg='4326').centroid.map(lambda p: p.x)
gdf_usa_new["lat"] = gdf_usa_new.to_crs(epsg='4326').centroid.map(lambda p: p.y)
for i in range(0,len(gdf_usa_new)):
folium.Marker(
location=[gdf_usa_new.iloc[i]['lat'], gdf_usa_new.iloc[i]['long']],
popup=gdf_usa_new.iloc[i]['name'],
icon=folium.DivIcon(html=f"""<div style="font-family: courier new; color: white">{gdf_usa_new.iloc[i]['name']}</div>""")
).add_to(usa_map)
usa_map
Run Code Online (Sandbox Code Playgroud)
鉴于上述情况,我得到以下结果。可以看出,标记彼此距离太近,因此在美国东部重叠。
当我放大时,标记看起来更清晰,因此不会重叠。
因此,如何修改代码以便在放大地图时显示标记?因此,当缩小地图时,只会出现某些标记,而当我放大地图时,则会出现其余标记。
我尝试遵循下面的答案,但很难理解在上面的代码中包含建议的答案的位置:
https://gis.stackexchange.com/questions/216558/leaflet-resize-markers-in-layer-when-zoom-in
更新,我已经添加了上面链接中的代码(见下文),但地图的结果仍然保持不变。
usa_map.get_root().html.add_child(folium.Element("""
var ar_icon_1 = ...;
var ar_icon_2 = ...;
var ar_icon_1_double_size …Run Code Online (Sandbox Code Playgroud) 我目前正在阅读"Scikit-Learn&TensorFlow的动手机器学习".当我尝试重新创建Transformation Pipelines代码时出错.我怎样才能解决这个问题?
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
num_pipeline = Pipeline([('imputer', Imputer(strategy = "median")),
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler()),
])
housing_num_tr = num_pipeline.fit_transform(housing_num)
from sklearn.pipeline import FeatureUnion
num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]
num_pipeline = Pipeline([
('selector', DataFrameSelector(num_attribs)),
('imputer', Imputer(strategy = "median")),
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler()),
])
cat_pipeline = Pipeline([('selector', DataFrameSelector(cat_attribs)),
('label_binarizer', LabelBinarizer()),
])
full_pipeline = FeatureUnion(transformer_list = [("num_pipeline", num_pipeline),
("cat_pipeline", cat_pipeline),
])
# And we can now run the whole pipeline simply:
housing_prepared = full_pipeline.fit_transform(housing) …Run Code Online (Sandbox Code Playgroud)