我正在Keras中实现一个多层感知器并使用scikit-learn来执行交叉验证.为此,我受到了Keras交叉验证问题中的代码的启发
from sklearn.cross_validation import StratifiedKFold
def load_data():
# load your data using this function
def create model():
# create your model using this function
def train_and_evaluate__model(model, data[train], labels[train], data[test], labels[test)):
# fit and evaluate here.
if __name__ == "__main__":
X, Y = load_model()
kFold = StratifiedKFold(n_splits=10)
for train, test in kFold.split(X, Y):
model = None
model = create_model()
train_evaluate(model, X[train], Y[train], X[test], Y[test])
Run Code Online (Sandbox Code Playgroud)
在我对神经网络的研究中,我了解到神经网络的知识表示是在突触权重和网络跟踪过程中,更新的权重,从而降低网络错误率并改善其性能.(就我而言,我正在使用监督学习)
为了更好地训练和评估神经网络性能,一种常用的方法是交叉验证,它返回数据集的分区,用于训练和评估模型.
我怀疑是......
在此代码段中:
for train, test in kFold.split(X, Y):
model = None
model = …Run Code Online (Sandbox Code Playgroud) machine-learning neural-network scikit-learn cross-validation keras