我使用Google colab制作了一个字典,将其转储到json文件中,然后通过以下代码将该文件下载到我的笔记本电脑中:
from google.colab import files
import json
dict = {'apple': 'fruit', 'mango': 'fruit', 'carrot': 'vegetable', 'brocoli': 'vegetable', 'cat': 'animal'}
with open('sampleDictionary.json', 'w') as f:
json.dump(dict, f)
files.download('sampleDictionary.json')
f.close()
Run Code Online (Sandbox Code Playgroud)
当我尝试运行此代码时,它给出此错误:
MessageError Traceback (most recent call last)
<ipython-input-29-1251d71a0a36> in <module>()
7 json.dump(dict, f)
8
----> 9 files.download('sampleDictionary.json')
10 f.close()
/usr/local/lib/python3.6/dist-packages/google/colab/files.py in download(filename)
176 'port': port,
177 'path': _os.path.abspath(filename),
--> 178 'name': _os.path.basename(filename),
179 })
/usr/local/lib/python3.6/dist-packages/google/colab/output/_js.py in eval_js(script, ignore_result)
37 if ignore_result:
38 return
---> 39 return _message.read_reply_from_input(request_id)
40
41
/usr/local/lib/python3.6/dist-packages/google/colab/_message.py in …Run Code Online (Sandbox Code Playgroud) 我刚开始使用 keras,我尝试为mnist数据集构建一个模型keras.datasets
这是我的初始代码:
import tensorflow as tf
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
Run Code Online (Sandbox Code Playgroud)
然后,我定义了一个模型:
model = tf.keras.Sequential()
model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
model.add(tf.keras.layers.Dense(512, activation = tf.nn.relu))
model.add(tf.keras.layers.Dense(10, activation = tf.nn.softmax))
model.compile(loss = 'sparse_categorical_crossentropy', optimizer='rmsprop')
model.fit(train_images, train_labels, epochs=10)
Run Code Online (Sandbox Code Playgroud)
我尝试使用这个模型model.compile(loss = 'sparse_categorical_crossentropy', optimizer='rmsprop')并且模型训练得很好
后来,我尝试评估模型:
loss, accuracy = model.evaluate(test_images, test_labels)
print('Accuracy on the test set: '+str(accuracy))
Run Code Online (Sandbox Code Playgroud)
它显示以下错误:
10000/10000 [==============================] - 0s 50us/step
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-68-7ccd830be0cb> in <module>()
----> 1 loss, accuracy = model.evaluate(test_images, test_labels)
2 …Run Code Online (Sandbox Code Playgroud) 我将google Colab笔记本用于需要我在地图上绘制GPS坐标的项目。我想为此使用底图。我尝试通过使用将其导入Colab笔记本中,
from mpl_tools.basemap import Basemap
并显示以下错误:
ModuleNotFoundError Traceback (most recent call last)
<ipython-input-24-2cb85a2f9bb7> in <module>()
----> 1 from mpl_tools.basemap import Basemap
ModuleNotFoundError: No module named 'mpl_tools'
Run Code Online (Sandbox Code Playgroud)
我需要安装底图模块才能使用它。我尝试!pip install basemap并尝试在Colab上运行它,但这没有用。
python matplotlib data-analysis data-science google-colaboratory
我从.csv文件加载了一个pandas数据帧,该文件包含一个具有日期时间值的列.
df = pd.read_csv('data.csv')
Run Code Online (Sandbox Code Playgroud)
具有日期时间值的列的名称是pickup_datetime.如果我这样做,这就是我得到的df['pickup_datetime'].head():
0 2009-06-15 17:26:00+00:00
1 2010-01-05 16:52:00+00:00
2 2011-08-18 00:35:00+00:00
3 2012-04-21 04:30:00+00:00
4 2010-03-09 07:51:00+00:00
Name: pickup_datetime, dtype: datetime64[ns, UTC]
Run Code Online (Sandbox Code Playgroud)
如何将此列转换为仅具有日期时间的日期值的numpy数组?例如:15from 0 2009-06-15 17:26:00+00:00,05from 1 2010-01-05 16:52:00+00:00等.
我有一个 REST API,当对其 URL 发出 GET 请求时,它会在其响应正文中提供图像。Postman 上给出的示例响应如下:\n
\n响应中的标头如下:
Date \xe2\x86\x92Fri, 24 Apr 2020 17:32:51 GMT\nServer \xe2\x86\x92WSGIServer/0.2 CPython/3.6.9\nContent-Type \xe2\x86\x92image/jpeg\nVary \xe2\x86\x92Accept, Cookie\nAllow \xe2\x86\x92GET, POST, HEAD, OPTIONS\nX-Frame-Options \xe2\x86\x92DENY\nContent-Length \xe2\x86\x92161076\nX-Content-Type-Options \xe2\x86\x92nosniff\nRun Code Online (Sandbox Code Playgroud)\n\n我尝试使用 flutter 代码向此 API 发出 GET 请求,然后打印响应中的正文内容(只是为了查看响应正文的外观。我不确定这是否是正确的方法)使用以下代码:
\n\nFuture<void> getImage() async {\n Directory directory = await getApplicationDocumentsDirectory();\n String filePath = "${directory.path}/loginCreds.txt";\n\n Map user_credentials = await this.getUserCreds(); //getUserCreds is another function in the same class\n String auth_token = user_credentials[\'auth_token\'];\n\n Response res = await get(\n "http://10.0.2.2:8000/usermgmt/profile/picture/",\n headers: {\n HttpHeaders.authorizationHeader: "Token $auth_token",\n },\n …Run Code Online (Sandbox Code Playgroud) python ×4
python-3.x ×2
android ×1
dart ×1
data-science ×1
datetime ×1
flutter ×1
http ×1
keras ×1
matplotlib ×1
pandas ×1
rest ×1
tensorflow ×1