我正在使用高斯混合模型进行说话人识别。我使用此代码来预测每个语音剪辑的说话者。
for path in file_paths:
path = path.strip()
print (path)
sr,audio = read(source + path)
vector = extract_features(audio,sr)
#print(vector)
log_likelihood = np.zeros(len(models))
#print(len(log_likelihood))
for i in range(len(models)):
gmm1 = models[i] #checking with each model one by one
#print(gmm1)
scores = np.array(gmm1.score(vector))
#print(scores)
#print(len(scores))
log_likelihood[i] = scores.sum()
print(log_likelihood)
winner = np.argmax(log_likelihood)
#print(winner)
print ("\tdetected as - ", speakers[winner])
Run Code Online (Sandbox Code Playgroud)
它给了我这样的输出:
[ 311.79769716 0. 0. 0. 0. ]
[ 311.79769716 -5692.56559902 0. 0. 0. ]
[ 311.79769716 -5692.56559902 -6170.21460788 0. 0. ]
[ …Run Code Online (Sandbox Code Playgroud) 我正在使用文本数据来查找情绪分析。我有每个句子的情感得分数据框。使用这些数据我正在创建一个饼图,但它在图中显示了 0%。我无法理解这个 0% 的含义。这是我的数据框 df1:
score
Negative 100.0
Neutral 0.0
Positive 0.0
Run Code Online (Sandbox Code Playgroud)
这是我创建饼图的代码:
import matplotlib.pyplot as plt
import os
plt.figure(figsize=(4,3))
df1.plot(kind='pie', autopct='%1.1f%%', subplots=True,startangle=90, legend = False, fontsize=14)
plt.axis('off')
plt.show()
Run Code Online (Sandbox Code Playgroud)
这是我的输出图:
我怎样才能从我的情节中删除这个 0%?
我有一个数据,其中有两列,一列是描述,另一列是发布位置。我在publishedAt列上应用了排序函数并获得了日期降序排列的输出。这是我的数据框的示例:
\n\n description publishedAt\n13 Bitcoin price has failed to secure momentum in... 2018-05-06T15:22:22Z\n16 Brian Kelly, a long-time contributor to CNBC\xe2\x80\x99s... 2018-05-05T15:56:48Z\n2 The bitcoin price is less than $100 away from ... 2018-05-05T13:14:45Z\n12 Mati Greenspan, a senior analyst at eToro and ... 2018-05-04T16:05:37Z\n52 A Singaporean startup developing \xe2\x80\x98smart bankno... 2018-05-04T14:02:30Z\n75 Cryptocurrencies are set to make a comeback on... 2018-05-03T08:10:19Z\n76 The bitcoin price is hovering near its best le... 2018-04-30T16:26:57Z\n74 In today\xe2\x80\x99s climate of ICOs with 100 billion to... 2018-04-30T12:03:31Z\n27 Investment guru …Run Code Online (Sandbox Code Playgroud)