我正在使用此代码来比较多个模型的性能:
from sklearn import model_selection
X = input data
Y = binary labels
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
results = []
names = []
scoring = 'accuracy'
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=7)
cv_results = model_selection.cross_val_score(model, X, Y, cv=kfold,scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %.2f (%.2f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
Run Code Online (Sandbox Code Playgroud)
我可以使用“准确性”和“回忆”作为评分,这些将提供准确性和敏感性。我怎样才能创建一个给我“特异性”的记分员
特异性= TN/(TN+FP)
其中 TN 和 FP 是混淆矩阵中的真负值和假正值
我试过这个
def tp(y_true, y_pred):
error= confusion_matrix(y_true, y_pred)[0,0]/(confusion_matrix(y_true,y_pred)[0,0] + confusion_matrix(y_true, y_pred)[0,1])
return error …Run Code Online (Sandbox Code Playgroud)