我创建了一个火炬张量,我希望它进入 GPU,但它没有。这太破了。怎么了?
def test_model_works_on_gpu():
with torch.cuda.device(0) as cuda:
some_random_d_model = 2 ** 9
five_sentences_of_twenty_words = torch.from_numpy(np.random.random((5, 20, T * d))).float()
five_sentences_of_twenty_words_mask = torch.from_numpy(np.ones((5, 1, 20))).float()
pytorch_model = make_sentence_model(d_model=some_random_d_model, T_sgnn=T, d_sgnn=d)
five_sentences_of_twenty_words.to(cuda)
five_sentences_of_twenty_words_mask.to(cuda)
print(type(five_sentences_of_twenty_words), type(five_sentences_of_twenty_words_mask))
print(five_sentences_of_twenty_words.is_cuda, five_sentences_of_twenty_words_mask.is_cuda)
pytorch_model.to(cuda)
output_before_match = pytorch_model(five_sentences_of_twenty_words, five_sentences_of_twenty_words_mask)
assert output_before_match.shape == (5, some_random_d_model)
print(type(output_before_match))
print(output_before_match.is_cuda, output_before_match.get_device())
Run Code Online (Sandbox Code Playgroud)
tests/test_model.py:58: RuntimeError
<class 'torch.Tensor'> <class 'torch.Tensor'>
False False
<class 'torch.Tensor'>
> print(output_before_match.is_cuda, output_before_match.get_device())
E RuntimeError: get_device is not implemented for tensors with CPU backend
Run Code Online (Sandbox Code Playgroud)
还:
>>> torch.cuda.is_available()
True
>>> torch.cuda.device_count()
2 …
Run Code Online (Sandbox Code Playgroud) 我有灰度图像,但我需要将其转换为一维向量的数据集我该怎么做?我在转换中找不到合适的方法:
train_dataset = torchvision.datasets.ImageFolder(root='./data',train=True, transform=transforms.ToTensor())
test_dataset = torchvision.datasets.ImageFolder(root='./data',train=False, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=4, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=4, shuffle=False)
Run Code Online (Sandbox Code Playgroud) 例如,我定义了一个模型,如下所示:
class Net(nn.module):
def __init__():
self.conv11 = nn.Conv2d(in_channel,out1_channel,3)
self.conv12 = nn.Conv2d(...)
self.conv13 = nn.Conv2d(...)
self.conv14 = nn.Conv2d(...)
...
#Here is the point
flat = nn.Flatten()
#I don't want to compute the size of data after flatten, but I need a linear layer.
fc_out = nn.Linear(???,out_dim)
Run Code Online (Sandbox Code Playgroud)
问题是线性层,我不想计算线性层输入的大小,但定义模型需要指定它。我怎么解决这个问题?
如何生成单词中低位和高位字符的所有组合?例如:
'abc'
→ ['abc', 'ABC', 'Abc', 'ABc', 'aBC', 'aBc', 'abC', 'Abc']
'ab'
→ ['ab', 'AB', 'Ab', 'aB']