我在InceptionResNetV2模型之前添加了一个密集层(预训练)这是InceptionResNetV2输出
model_base = InceptionResNetV2(include_top=True, weights='imagenet')
x = model_base.get_layer('avg_pool').output
x = Dense(3, activation='softmax')(x)
Run Code Online (Sandbox Code Playgroud)
这是将添加的图层
input1 = Input(shape=input_shape1)
pre1 = Conv2D(filters=3, kernel_size=(5, 5), padding='SAME',
input_shape=input_shape1, name='first_dense')(input1)
pre = Model(inputs=input1, outputs=pre1)
Run Code Online (Sandbox Code Playgroud)
这是两个模型的组合
after = Model(inputs=pre.output, outputs=x)
model = Model(inputs=input1, outputs=after.output)
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
Run Code Online (Sandbox Code Playgroud)
使用
pre.output
Run Code Online (Sandbox Code Playgroud)
如
after.input
Run Code Online (Sandbox Code Playgroud)
但它不起作用.我该如何解决?