小编Ngọ*_*ình的帖子

如何使用sklearn获得K-Fold交叉验证的平均分数

我使用 sklearn 应用带有 K-fold 的决策树,有人可以帮助我显示它的平均分数。下面是我的代码:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import KFold
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix,classification_report

dta=pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/blood-transfusion/transfusion.data")

X=dta.drop("whether he/she donated blood in March 2007",axis=1)

X=X.values # convert dataframe to numpy array

y=dta["whether he/she donated blood in March 2007"]

y=y.values # convert dataframe to numpy array

kf = KFold(n_splits=10)

KFold(n_splits=10, random_state=None, shuffle=False)

clf_tree=DecisionTreeClassifier()

for train_index, test_index in kf.split(X):
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index] …
Run Code Online (Sandbox Code Playgroud)

scikit-learn cross-validation

5
推荐指数
2
解决办法
9167
查看次数

标签 统计

cross-validation ×1

scikit-learn ×1