我是hadoop分布式文件系统的新手,我已经在我的机器上完成了hadoop单节点的安装.但是之后当我要将数据上传到hdfs时,它会给出一条错误消息Permission Denied.
来自终端的消息带命令:
hduser@ubuntu:/usr/local/hadoop$ hadoop fs -put /usr/local/input-data/ /input
put: /usr/local/input-data (Permission denied)
hduser@ubuntu:/usr/local/hadoop$
Run Code Online (Sandbox Code Playgroud)
使用sudo并在sudouser中添加hduser后:
hduser@ubuntu:/usr/local/hadoop$ sudo bin/hadoop fs -put /usr/local/input-data/ /inwe
put: org.apache.hadoop.security.AccessControlException: Permission denied: user=root, access=WRITE, inode="":hduser:supergroup:rwxr-xr-x
hduser@ubuntu:/usr/local/hadoop$
Run Code Online (Sandbox Code Playgroud) 从(http://girlincomputerscience.blogspot.com/2010/11/apache-mahout.html)安装mahout之后.如何运行mahout算法,从那里我可以获得最受欢迎的mahout新手的简单教程....
提前致谢.
我已经使用Scikit学习建立了预测模型。我已经用Flask,joblib部署了此模型。每当我预测加载的模型有新的传入请求时,它在控制台上的打印消息中都会显示有关内核的总时间。
现在,我要禁用此打印。当模型预测新的传入数据时,我如何抑制给定消息。
[Parallel(n_jobs=24)]: Done 117 out of 174 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=24)]: Done 121 out of 179 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=24)]: Done 122 out of 181 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=24)]: Done 123 out of 183 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=24)]: Done 125 out of 185 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=24)]: Done 127 out of 188 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=24)]: Done 128 out of 190 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=24)]: …Run Code Online (Sandbox Code Playgroud) 我编写了java代码,用于从file中生成搜索到的数据的json.但是它没有生成精确的JsonArray.就像是
[{"item":"1617"},{"item":"1617"}]
代替
[{"item":"747"},{"item":"1617"}].
这里1617是从文件中获取的最后一项.
JSONArray ja = new JSONArray();
JSONObject jo = new JSONObject();
while (products.readRecord())
{
String productID = products.get("user");
int j = Integer.parseInt(productID);
if(j == userId) {
itemid = products.get("item");
jo.put("item",itemid);
ja.add(jo);
}
}
out.println(ja);
products.close();
Run Code Online (Sandbox Code Playgroud) 我想将基于Hadoop的Mahout推荐器与Apache Hive结合起来.所以我生成的建议书直接存储在我的Hive Tables中.任何人都知道类似的教程吗?
我在Ubuntu 12.o4客户端操作系统上安装了Scala,sbt和hadoop 1.0.3.随着链接的参考 - http://docs.sigmoidanalytics.com/index.php/How_to_Install_Spark_on_Ubuntu-12.04,我尝试构建Spark并获得与预留空间相关的错误.
这是我想要运行的:
hduser@vignesh-desktop:/usr/local/spark-1.1.0$ SPARK_HADOOP_VERSION=1.1.0 sbt/sbt assembly
Run Code Online (Sandbox Code Playgroud)
输出有以下错误:
Using /usr/lib/jvm/java-6-openjdk-i386/ as default JAVA_HOME.
Note, this will be overridden by -java-home if it is set.
Error occurred during initialization of VM
Could not reserve enough space for object heap
Could not create the Java virtual machine.
Run Code Online (Sandbox Code Playgroud) 我是R的新手,当我要使用glm()来估计一个逻辑模型时,它不是预测响应,而是为我的预测函数的每个输入调用预测函数(如1)提供一个非实际输出.
Code:
ex2data1R <- read.csv("/media/ex2data1R.txt")
x <-ex2data1R$x
y <-ex2data1R$y
z <-ex2data1R$z
logisticmodel <- glm(z~x+y,family=binomial(link = "logit"),data=ex2data1R)
newdata = data.frame(x=c(10),y=(10))
predict(logisticmodel, newdata, type="response")
Output:
> predict(logisticmodel, newdata, type="response")
1
1.181875e-11
Data(ex2data1R.txt) :
"x","y","z"
34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
60.18259938620976,86.30855209546826,1
79.0327360507101,75.3443764369103,1
45.08327747668339,56.3163717815305,0
61.10666453684766,96.51142588489624,1
75.02474556738889,46.55401354116538,1
76.09878670226257,87.42056971926803,1
84.43281996120035,43.53339331072109,1
95.86155507093572,38.22527805795094,0
75.01365838958247,30.60326323428011,0
82.30705337399482,76.48196330235604,1
69.36458875970939,97.71869196188608,1
39.53833914367223,76.03681085115882,0
53.9710521485623,89.20735013750205,1
69.07014406283025,52.74046973016765,1
67.94685547711617,46.67857410673128,0
70.66150955499435,92.92713789364831,1
76.97878372747498,47.57596364975532,1
67.37202754570876,42.83843832029179,0
89.67677575072079,65.79936592745237,1
50.534788289883,48.85581152764205,0
34.21206097786789,44.20952859866288,0
77.9240914545704,68.9723599933059,1
62.27101367004632,69.95445795447587,1
80.1901807509566,44.82162893218353,1
93.114388797442,38.80067033713209,0
61.83020602312595,50.25610789244621,0
38.78580379679423,64.99568095539578,0
61.379289447425,72.80788731317097,1
85.40451939411645,57.05198397627122,1
52.10797973193984,63.12762376881715,0
52.04540476831827,69.43286012045222,1
40.23689373545111,71.16774802184875,0
54.63510555424817,52.21388588061123,0
33.91550010906887,98.86943574220611,0
64.17698887494485,80.90806058670817,1
74.78925295941542,41.57341522824434,0
34.1836400264419,75.2377203360134,0
83.90239366249155,56.30804621605327,1
51.54772026906181,46.85629026349976,0
94.44336776917852,65.56892160559052,1
82.36875375713919,40.61825515970618,0
51.04775177128865,45.82270145776001,0
62.22267576120188,52.06099194836679,0
77.19303492601364,70.45820000180959,1
97.77159928000232,86.7278223300282,1 …Run Code Online (Sandbox Code Playgroud) hadoop ×3
java ×2
mahout ×2
apache-spark ×1
cygwin ×1
hdfs ×1
hive ×1
json ×1
permissions ×1
predict ×1
python ×1
r ×1
regression ×1
sbt ×1
scala ×1
scikit-learn ×1
security ×1
shell ×1