我想为未来选择最好的算法.我找到了一些解决方案,但我不明白哪个R-Squared值是正确的.
为此,我将数据分为两个作为测试和训练,我在下面打印了两个不同的R平方值.
import statsmodels.api as sm
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
lineer = LinearRegression()
lineer.fit(x_train,y_train)
lineerPredict = lineer.predict(x_test)
scoreLineer = r2_score(y_test, lineerPredict) # First R-Squared
model = sm.OLS(lineerPredict, y_test)
print(model.fit().summary()) # Second R-Squared
Run Code Online (Sandbox Code Playgroud)
第一个R-Squared结果是-4.28.
第二个R-Squared结果是0.84
但我不明白哪个值是正确的.
python machine-learning linear-regression scikit-learn statsmodels