在给定我的数据集的情况下,我使用以下代码通过MLPClassifier拟合模型:
tr_X, ts_X, tr_y, ts_y = train_test_split(X, y, train_size=.8)
model = MLPClassifier(hidden_layer_sizes=(32, 32),
activation='relu',
solver=adam,
learning_rate='adaptive',
early_stopping=True)
model.fit(tr_X, tr_y)
prd_r = model.predict(ts_X)
test_acc = accuracy_score(ts_y, prd_r) * 100.
loss_values = model.estimator.loss_curve_
print (loss_values)
Run Code Online (Sandbox Code Playgroud)
如上所述,可以通过调用loss_curve_返回损失列表来获取每批的损失值.我懂了:
[0.69411586222116872, 0.6923803442491846, 0.66657293575365906, 0.43212054205535255, 0.23119813830216157, 0.15497928755966919, 0.11799652235604828, 0.095235784011297939, 0.079951427356068624, 0.069012741113626194, 0.061282868601098078, 0.054871864138797251, 0.049835046972801049, 0.046056362860260207, 0.042823979794540182, 0.040681220899240651, 0.038262366774481374, 0.036256840660697079, 0.034418333946277503, 0.033547227978657508, 0.03285581956914093, 0.031671266419493666, 0.030941451221456757]
Run Code Online (Sandbox Code Playgroud)
我想绘制这些结果来代表loss curve这个模型.问题是,我不知道是什么x-axis,并y-axis会在这种情况下.如果我做y-axis这些损失值,x-axis这里应该显示损失曲线是减少还是增加?
任何提示或想法都表示赞赏.
plot machine-learning matplotlib neural-network scikit-learn
如果我们查看 Keras 中的可用模型列表(如此处所示),我们会发现几乎所有模型都是用 实例化的weights='imagenet'。例如:
model = VGG16(weights='imagenet', include_top=False)
Run Code Online (Sandbox Code Playgroud)
为什么总是imagenet?是因为它是基线吗?如果没有,还有哪些其他选择?
谢谢
deep-learning conv-neural-network keras tensorflow pre-trained-model
假设我有以下字典:
dict_ = {0: {40: [0.692, 0.76, 0.01]}, 1: {33: [0.69, 0.02]}, 2: {39: [0.698, 0.023]}}
Run Code Online (Sandbox Code Playgroud)
我想将内部列表平均在一起,以便生成最终的平均列表,如下所示:[(0.692+0.690.698)/3, (0.76+0.02+0.023)/3, (0.01+0.0+0.0)/3].我的以下代码是:
for i in dict_:
for j in dict_[i]:
W = [sum(e) / len(e) for e in zip(*dict_[i][j])]
print(W)
Run Code Online (Sandbox Code Playgroud)
有这个错误:
Traceback (most recent call last):
File "test.py", line 97, in <module>
W = [sum(e) / len(e) for e in zip(* dict_[i][j])]
TypeError: zip argument #1 must support iteration
Run Code Online (Sandbox Code Playgroud)
我该如何解决这个问题?任何帮助表示赞赏.