我正在尝试使用以下代码
mysql = MySQL()
app = Flask(__name__)
app.config['MYSQL_DATABASE_USER'] = 'root'
app.config['MYSQL_DATABASE_PASSWORD'] = 'root'
app.config['MYSQL_DATABASE_DB'] = 'compData'
app.config['MYSQL_DATABASE_HOST'] = '0.0.0.0'
mysql.init_app(app)
@app.route("/Authenticate")
def Authenticate():
cursor = mysql.connect().cursor()
cursor.execute("SELECT * from abclimit 5")
pro_info = pd.DataFrame(data=cursor.fetchall(), index=None,columns=[i[0] for i in cursor.description])
return Response(json.dumps(pro_info), mimetype='application/json')
if __name__ == "__main__":
app.run()
Run Code Online (Sandbox Code Playgroud)
但给了我错误
File "pathe\frame.py", line 303, in __init__
raise PandasError('DataFrame constructor not properly called!')
pandas.core.common.PandasError: DataFrame constructor not properly called!
Run Code Online (Sandbox Code Playgroud)
我想从 sql 查询结果创建熊猫 DF
我正在 databricks 社区版上使用 Sparkdl 进行图像分类。我添加了所有图书馆的。我已经使用图像数据创建了数据框。
from pyspark.ml.classification import LogisticRegression
from pyspark.ml import Pipeline
from sparkdl import DeepImageFeaturizer
featurizer = DeepImageFeaturizer(inputCol="image", outputCol="features", modelName="InceptionV3")
lr = LogisticRegression(maxIter=20, regParam=0.05, elasticNetParam=0.3, labelCol="label")
p = Pipeline(stages=[featurizer, lr])
p_model = p.fit(train_df)
AttributeError Traceback (most recent call last)
<command-2468766328144961> in <module>()
7 p = Pipeline(stages=[featurizer, lr])
8
----> 9 p_model = p.fit(train_df)
/databricks/spark/python/pyspark/ml/base.py in fit(self, dataset, params)
62 return self.copy(params)._fit(dataset)
63 else:
---> 64 return self._fit(dataset)
65 else:
66 raise ValueError("Params must be either a param map …Run Code Online (Sandbox Code Playgroud)